Java - Date and Time

Java provides the Date class available in java.util package, this class encapsulates the current date and time.

The Date class supports two constructors as shown in the following table.

Sr.No.Constructor & Description
1**Date( )**This constructor initializes the object with the current date and time.
2**Date(long millisec)**This constructor accepts an argument that equals the number of milliseconds that have elapsed since midnight, January 1, 1970.

Following are the methods of the date class.

Sr.No.Method & Description
1boolean after(Date when)This method tests if this date is after the specified date.
2boolean before(Date when)This method tests if this date is before the specified date.
3Object clone()This method return a copy of this object.
4int compareTo(Date anotherDate)This method compares two Dates for ordering.
5boolean equals(Object obj)This method compares two dates for equality.
6static Date from(Instant instant)This method obtains an instance of Date from an Instant object.
7long getTime()This method returns the number of milliseconds since January 1, 1970, 00:00:00 GMT represented by this Date object.
8int hashCode()This method returns a hash code value for this object.
9void setTime(long time)This method sets this Date object to represent a point in time that is time milliseconds after January 1, 1970 00:00:00 GMT.
10Instant toInstant()This method converts this Date object to an Instant.
11String toString()This method converts this Date object to a String of the form.

Getting Current Date and Time

This is a very easy method to get current date and time in Java. You can use a simple Date object with toString() method to print the current date and time as follows −

Example

import java.util.Date;
public class DateDemo {

   public static void main(String args[]) {
      // Instantiate a Date object
      Date date = new Date();

      // display time and date using toString()
      System.out.println(date.toString());
   }
}

This will produce the following result −

Output

on May 04 09:51:52 CDT 2009

Date Comparison

Following are the three ways to compare two dates −

  • You can use getTime( ) to obtain the number of milliseconds that have elapsed since midnight, January 1, 1970, for both objects and then compare these two values.
  • You can use the methods before( ), after( ), and equals( ). Because the 12th of the month comes before the 18th, for example, new Date(99, 2, 12).before(new Date (99, 2, 18)) returns true.
  • You can use the compareTo( ) method, which is defined by the Comparable interface and implemented by Date.

Date Formatting Using SimpleDateFormat

SimpleDateFormat is a concrete class for formatting and parsing dates in a locale-sensitive manner. SimpleDateFormat allows you to start by choosing any user-defined patterns for date-time formatting.

Example

import java.util.*;
import java.text.*;

public class DateDemo {

   public static void main(String args[]) {
      Date dNow = new Date( );
      SimpleDateFormat ft = 
      new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zzz");

      System.out.println("Current Date: " + ft.format(dNow));
   }
}

This will produce the following result −

Output

Current Date: Sun 2004.07.18 at 04:14:09 PM PDT

Simple DateFormat Format Codes

To specify the time format, use a time pattern string. In this pattern, all ASCII letters are reserved as pattern letters, which are defined as the following −

CharacterDescriptionExample
GEra designatorAD
yYear in four digits2001
MMonth in yearJuly or 07
dDay in month10
hHour in A.M./P.M. (1~12)12
HHour in day (0~23)22
mMinute in hour30
sSecond in minute55
SMillisecond234
EDay in weekTuesday
DDay in year360
FDay of week in month2 (second Wed. in July)
wWeek in year40
WWeek in month1
aA.M./P.M. markerPM
kHour in day (1~24)24
KHour in A.M./P.M. (0~11)10
zTime zoneEastern Standard Time
Escape for textDelimiter
Single quote`

Date Formatting Using printf

Date and time formatting can be done very easily using printf method. You use a two-letter format, starting with t and ending in one of the letters of the table as shown in the following code.

Example

import java.util.Date;
public class DateDemo {

   public static void main(String args[]) {
      // Instantiate a Date object
      Date date = new Date();

      // display time and date
      String str = String.format("Current Date/Time : %tc", date );

      System.out.printf(str);
   }
}

This will produce the following result −

Output

Current Date/Time : Sat Dec 15 16:37:57 MST 2012

It would be a bit silly if you had to supply the date multiple times to format each part. For that reason, a format string can indicate the index of the argument to be formatted.

The index must immediately follow the % and it must be terminated by a $.

Example

import java.util.Date;
public class DateDemo {

   public static void main(String args[]) {
      // Instantiate a Date object
      Date date = new Date();
  
      // display time and date
      System.out.printf("%1$s %2$tB %2$td, %2$tY", "Due date:", date);
   }
}

This will produce the following result −

Output

Due date: February 09, 2004

Alternatively, you can use the < flag. It indicates that the same argument as in the preceding format specification should be used again.

Example

import java.util.Date;
public class DateDemo {

   public static void main(String args[]) {
      // Instantiate a Date object
      Date date = new Date();
  
      // display formatted date
      System.out.printf("%s %tB %<te, %<tY", "Due date:", date);
   }
}

This will produce the following result −

Output

Due date: February 09, 2004

Date and Time Conversion Characters

CharacterDescriptionExample
cComplete date and timeMon May 04 09:51:52 CDT 2009
FISO 8601 date2004-02-09
DU.S. formatted date (month/day/year)02/09/2004
T24-hour time18:05:19
r12-hour time06:05:19 pm
R24-hour time, no seconds18:05
YFour-digit year (with leading zeroes)2004
yLast two digits of the year (with leading zeroes)04
CFirst two digits of the year (with leading zeroes)20
BFull month nameFebruary
bAbbreviated month nameFeb
mTwo-digit month (with leading zeroes)02
dTwo-digit day (with leading zeroes)03
eTwo-digit day (without leading zeroes)9
AFull weekday nameMonday
aAbbreviated weekday nameMon
jThree-digit day of year (with leading zeroes)069
HTwo-digit hour (with leading zeroes), between 00 and 2318
kTwo-digit hour (without leading zeroes), between 0 and 2318
ITwo-digit hour (with leading zeroes), between 01 and 1206
lTwo-digit hour (without leading zeroes), between 1 and 126
MTwo-digit minutes (with leading zeroes)05
STwo-digit seconds (with leading zeroes)19
LThree-digit milliseconds (with leading zeroes)047
NNine-digit nanoseconds (with leading zeroes)047000000
PUppercase morning or afternoon markerPM
pLowercase morning or afternoon markerpm
zRFC 822 numeric offset from GMT-0800
ZTime zonePST
sSeconds since 1970-01-01 00:00:00 GMT1078884319
QMilliseconds since 1970-01-01 00:00:00 GMT1078884319047

There are other useful classes related to Date and time. For more details, you can refer to Java Standard documentation.

Parsing Strings into Dates

The SimpleDateFormat class has some additional methods, notably parse( ), which tries to parse a string according to the format stored in the given SimpleDateFormat object.

Example

import java.util.*;
import java.text.*;
  
public class DateDemo {

   public static void main(String args[]) {
      SimpleDateFormat ft = new SimpleDateFormat ("yyyy-MM-dd"); 
      String input = args.length == 0 ? "1818-11-11" : args[0]; 

      System.out.print(input + " Parses as "); 
      Date t;
      try {
         t = ft.parse(input); 
         System.out.println(t); 
      } catch (ParseException e) { 
         System.out.println("Unparseable using " + ft); 
      }
   }
}

A sample run of the above program would produce the following result −

Output

1818-11-11 Parses as Wed Nov 11 00:00:00 EST 1818

Sleeping for a While

You can sleep for any period of time from one millisecond up to the lifetime of your computer. For example, the following program would sleep for 3 seconds −

Example

import java.util.*;
public class SleepDemo {

   public static void main(String args[]) {
      try { 
         System.out.println(new Date( ) + "\n"); 
         Thread.sleep(5*60*10); 
         System.out.println(new Date( ) + "\n"); 
      } catch (Exception e) {
         System.out.println("Got an exception!"); 
      }
   }
}

This will produce the following result −

Output

Sun May 03 18:04:41 GMT 2009
Sun May 03 18:04:51 GMT 2009

Measuring Elapsed Time

Sometimes, you may need to measure point in time in milliseconds. So let’s re-write the above example once again −

Example

import java.util.*;
public class DiffDemo {

   public static void main(String args[]) {
      try {
         long start = System.currentTimeMillis( );
         System.out.println(new Date( ) + "\n");
         
         Thread.sleep(5*60*10);
         System.out.println(new Date( ) + "\n");
         
         long end = System.currentTimeMillis( );
         long diff = end - start;
         System.out.println("Difference is : " + diff);
      } catch (Exception e) {
         System.out.println("Got an exception!");
      }
   }
}

This will produce the following result −

Output

Sun May 03 18:16:51 GMT 2009
Sun May 03 18:16:57 GMT 2009
Difference is : 5993

GregorianCalendar Class

GregorianCalendar is a concrete implementation of a Calendar class that implements the normal Gregorian calendar with which you are familiar. We did not discuss Calendar class in this tutorial, you can look up standard Java documentation for this.

The getInstance( ) method of Calendar returns a GregorianCalendar initialized with the current date and time in the default locale and time zone. GregorianCalendar defines two fields: AD and BC. These represent the two eras defined by the Gregorian calendar.

There are also several constructors for GregorianCalendar objects −

Sr.No.Constructor & Description
1**GregorianCalendar()**Constructs a default GregorianCalendar using the current time in the default time zone with the default locale.
2**GregorianCalendar(int year, int month, int date)**Constructs a GregorianCalendar with the given date set in the default time zone with the default locale.
3**GregorianCalendar(int year, int month, int date, int hour, int minute)**Constructs a GregorianCalendar with the given date and time set for the default time zone with the default locale.
4**GregorianCalendar(int year, int month, int date, int hour, int minute, int second)**Constructs a GregorianCalendar with the given date and time set for the default time zone with the default locale.
5**GregorianCalendar(Locale aLocale)**Constructs a GregorianCalendar based on the current time in the default time zone with the given locale.
6**GregorianCalendar(TimeZone zone)**Constructs a GregorianCalendar based on the current time in the given time zone with the default locale.
7**GregorianCalendar(TimeZone zone, Locale aLocale)**Constructs a GregorianCalendar based on the current time in the given time zone with the given locale.

Here is the list of few useful support methods provided by GregorianCalendar class −

Sr.No.Method & Description
1**void add(int field, int amount)**Adds the specified (signed) amount of time to the given time field, based on the calendar’s rules.
2**protected void computeFields()**Converts UTC as milliseconds to time field values.
3**protected void computeTime()**Overrides Calendar Converts time field values to UTC as milliseconds.
4**boolean equals(Object obj)**Compares this GregorianCalendar to an object reference.
5**int get(int field)**Gets the value for a given time field.
6**int getActualMaximum(int field)**Returns the maximum value that this field could have, given the current date.
7**int getActualMinimum(int field)**Returns the minimum value that this field could have, given the current date.
8**int getGreatestMinimum(int field)**Returns highest minimum value for the given field if varies.
9**Date getGregorianChange()**Gets the Gregorian Calendar change date.
10**int getLeastMaximum(int field)**Returns lowest maximum value for the given field if varies.
11**int getMaximum(int field)**Returns maximum value for the given field.
12**Date getTime()**Gets this Calendar’s current time.
13**long getTimeInMillis()**Gets this Calendar’s current time as a long.
14**TimeZone getTimeZone()**Gets the time zone.
15**int getMinimum(int field)**Returns minimum value for the given field.
16**int hashCode()**Overrides hashCode.
17**boolean isLeapYear(int year)**Determines if the given year is a leap year.
18**void roll(int field, boolean up)**Adds or subtracts (up/down) a single unit of time on the given time field without changing larger fields.
19**void set(int field, int value)**Sets the time field with the given value.
20**void set(int year, int month, int date)**Sets the values for the fields year, month, and date.
21**void set(int year, int month, int date, int hour, int minute)**Sets the values for the fields year, month, date, hour, and minute.
22**void set(int year, int month, int date, int hour, int minute, int second)**Sets the values for the fields year, month, date, hour, minute, and second.
23**void setGregorianChange(Date date)**Sets the GregorianCalendar change date.
24**void setTime(Date date)**Sets this Calendar’s current time with the given Date.
25**void setTimeInMillis(long millis)**Sets this Calendar’s current time from the given long value.
26**void setTimeZone(TimeZone value)**Sets the time zone with the given time zone value.
27**String toString()**Returns a string representation of this calendar.

Example

import java.util.*;
public class GregorianCalendarDemo {

   public static void main(String args[]) {
      String months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
         "Oct", "Nov", "Dec"};
      
      int year;
      // Create a Gregorian calendar initialized
      // with the current date and time in the
      // default locale and timezone.
      
      GregorianCalendar gcalendar = new GregorianCalendar();
      
      // Display current time and date information.
      System.out.print("Date: ");
      System.out.print(months[gcalendar.get(Calendar.MONTH)]);
      System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");
      System.out.println(year = gcalendar.get(Calendar.YEAR));
      System.out.print("Time: ");
      System.out.print(gcalendar.get(Calendar.HOUR) + ":");
      System.out.print(gcalendar.get(Calendar.MINUTE) + ":");
      System.out.println(gcalendar.get(Calendar.SECOND));

      // Test if the current year is a leap year
      if(gcalendar.isLeapYear(year)) {
         System.out.println("The current year is a leap year");
      }else {
         System.out.println("The current year is not a leap year");
      }
   }
}

This will produce the following result −

Output

Date: Apr 22 2009
Time: 11:25:27
The current year is not a leap year

For a complete list of constant available in Calendar class, you can refer the standard Java documentation.

© 2024 All rights reserved. | Made With 🤍 By The_MAK Team